The spherical maximal operator on radial functions
نویسندگان
چکیده
منابع مشابه
Spherical Maximal Operators on Radial Functions
where dσ is the rotationally invariant measure on Sd−1, normalized such that σ(Sd−1) = 1. Stein [5] showed that limt→0Atf(x) = f(x) almost everywhere, provided f ∈ L(R), p > d/(d − 1) and d ≥ 3. Later Bourgain [1] extended this result to the case d = 2. If p ≤ d/(d − 1) then pointwise convergence fails. However if {tj}j=1 is a fixed sequence converging to 0 then pointwise convergence may hold f...
متن کاملThe Best Constant for the Centered Maximal Operator on Radial Functions
We show that the lowest constant appearing in the weak type (1,1) inequality satisfied by the centered Hardy-Littlewood maximal operator on radial integrable functions is 1.
متن کاملOn Spherical Averages of Radial Basis Functions
A radial basis function (RBF) has the general form
متن کاملThe Universal Maximal Operator on Special Classes of Functions
We prove pointwise inequalities for the maximal operator over all the directions in R when acting on l-radial functions and on product functions. From these inequalities we deduce boundedness results on L for p > n; these can be applied to other operators, in particular to the Kakeya maximal operator.
متن کاملOn Maximal Spherical Codes I
We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.09.028